Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals.
نویسندگان
چکیده
Oxidation of proteins by reactive oxygen species is associated with aging, oxidative stress, and many diseases. Although free and protein-bound methionine residues are particularly sensitive to oxidation to methionine sulfoxide derivatives, these oxidations are readily repaired by the action of methionine sulfoxide reductase (MsrA). To gain a better understanding of the biological roles of MsrA in metabolism, we have created a strain of mouse that lacks the MsrA gene. Compared with the wild type, this mutant: (i) exhibits enhanced sensitivity to oxidative stress (exposure to 100% oxygen); (ii) has a shorter lifespan under both normal and hyperoxic conditions; (iii) develops an atypical (tip-toe) walking pattern after 6 months of age; (iv) accumulates higher tissue levels of oxidized protein (carbonyl derivatives) under oxidative stress; and (v) is less able to up-regulate expression of thioredoxin reductase under oxidative stress. It thus seems that MsrA may play an important role in aging and neurological disorders.
منابع مشابه
Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging.
Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA ...
متن کاملDimethyl sulfide protects against oxidative stress and extends lifespan via a methionine sulfoxide reductase A‐dependent catalytic mechanism
Methionine (Met) sulfoxide reductase A (MsrA) is a key endogenous antioxidative enzyme with longevity benefits in animals. Only very few approaches have been reported to enhance MsrA function. Recent reports have indicated that the antioxidant capability of MsrA may involve a Met oxidase activity that facilities the reaction of Met with reactive oxygen species (ROS). Herein, we used a homology ...
متن کاملExpression, subcellular localization, and antioxidant role of mammalian methionine sulfoxide reductases in Saccharomyces cerevisiae.
Despite the growing body of evidence suggesting a role for MsrA in antioxidant defense, little is currently known regarding the function of MsrB in cellular protection against oxidative stress. In this study, we overexpressed the mammalian MsrB and MsrA genes in Saccharomyces cerevisiae and assessed their subcellular localization and antioxidant functions. We found that the mitochondrial MsrB3 ...
متن کاملMethionine sulfoxide reductases: selenoprotein forms and roles in antioxidant protein repair in mammals.
Msrs (methionine sulfoxide reductases), MsrA and MsrB, are repair enzymes that reduce methionine sulfoxide residues in oxidatively damaged proteins to methionine residues in a stereospecific manner. These enzymes protect cells from oxidative stress and have been implicated in delaying the aging process and progression of neurodegenerative diseases. In recent years, significant efforts have been...
متن کاملHigh-quality life extension by the enzyme peptide methionine sulfoxide reductase.
Cumulative oxidative damages to cell constituents are considered to contribute to aging and age-related diseases. The enzyme peptide methionine sulfoxide reductase A (MSRA) catalyzes the repair of oxidized methionine in proteins by reducing methionine sulfoxide back to methionine. However, whether MSRA plays a role in the aging process is poorly understood. Here we report that overexpression of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 23 شماره
صفحات -
تاریخ انتشار 2001